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Abstract

The behavior and abundance of sympatric predators can be affected by a

complex dominance hierarchy. The strength of antagonistic interactions in

predator communities is difficult to study and remains poorly understood for

many predator assemblages. Predators directly and indirectly influence the

broader ecosystem, so identifying the relative importance of competition, prey,

and habitat in shaping predator interactions has broad conservation and man-

agement implications. We investigated space use among five predator species

(black bear [Ursus americanus], bobcat [Lynx rufus], coyote [Canis latrans],

mountain lion [Puma concolor], and gray wolf [Canis lupus]) across three tem-

poral scales in northern Idaho, USA. We used camera trap data to test whether

potentially subordinate predators spatially avoided dominant predators and

how prey availability influenced those relationships. We found few instances

of subordinate predators spatially avoiding dominant predators and only at

the finest temporal scale of our analyses. Instead, habitat features generally

influenced predator space use patterns at coarser scales whereas prey and com-

petitor presence influenced space use patterns at finer scales. Co-occurrence was

positively associated between coyotes and bobcats at coarser timescales and

between mesopredators and apex predators at finer timescales. Bobcats and

mountain lions temporarily delayed the use of sites recently visited by coyotes

and black bears, respectively. And all predator species used sites sooner follow-

ing the detection of a competitor in areas with higher relative abundances of

prey (primarily white-tailed deer [Odocoileus virginianus]). Our results suggest

attraction to shared habitats and prey resources influenced space use in the

predator community more than avoidance of competitors. We propose that the

effects of interspecific interactions on predator distributions were most evident

for mesopredators because their trophic position requires balancing risks and

rewards associated with prey, apex predators, and other mesopredators. In addi-

tion, relatively high densities of a common prey source likely facilitated the spa-

tial coexistence in this predator community. Our study demonstrates the value
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of simultaneously assessing multiple interspecific interactions across different

spatiotemporal scales to discern relationships within the predator guild.

KEYWORD S
apex predator, carnivore, competition, interspecific interactions, mesopredators,
multispecies occupancy model, resource partitioning, space use

INTRODUCTION

Competitive interactions among carnivores can shape the
diversity and distribution of species within a wildlife
community (Connell, 1983; Linnell & Strand, 2000). A
change in the population of one carnivore species may
influence populations of other sympatric carnivores and
potentially alter predation on prey populations, resulting
in community-wide effects of interspecific competition
(e.g., mesopredator release; Crooks & Soule, 1999). Thus,
management actions intended to manipulate one species
may have unintended consequences for other species,
highlighting the difficulty of managing and conserving
communities without detailed information about inter-
specific competition among carnivores (Connell, 1983;
Linnell & Strand, 2000; Penjor et al., 2022).

Numerous co-evolved life history traits and behav-
ioral mechanisms facilitate coexistence among competing
species (e.g., niche partitioning; MacArthur & Levins,
1967; Pianka, 1974). Segregation in space and/or time is
one such process as it allows carnivores, particularly tax-
onomically related species with highly overlapping diets
(Schoener, 1974), to use similar resources while minimiz-
ing potentially negative interactions (e.g., kleptoparasitism,
intraguild killing; Palomares & Caro, 1999; Ramesh
et al., 2017). Interspecific competition can therefore
strongly influence the distribution and co-occurrence of
predators, producing patterns of spatial avoidance across
the entire carnivore guild in an ecosystem (Grassel
et al., 2015; Ritchie & Johnson, 2009). For instance,
Vanak et al. (2013) found that the home ranges of
African wild dogs (Lycaon pictus) overlapped little with
the home ranges of several larger competitors (African
lions [Panthera leo], leopards [Panthera pardus], and
cheetahs [Acinonyx jubatus]) and that wild dogs avoided
areas recently used by larger competitors. Similarly,
Ramesh et al. (2017) found that spotted hyenas (Crocuta
crocuta) and leopards were less likely to be detected at
the same sites, both were less likely to be detected at sites
with lions, and smaller carnivores were less likely to be
detected where leopards were observed. Challenges
remain, however, in determining whether such patterns
reflect functional responses to interspecific interactions or
are simply due to differential habitat use (i.e., fundamental

vs. realized Eltonian niche; Hutchinson, 1975; Sober�on,
2007). Considering both habitat preferences and species
interactions when assessing patterns of carnivore space
use is therefore necessary to understand what factors
structure a carnivore community (Blanchet et al., 2020;
Gompper et al., 2016; Miller et al., 2018).

Prey availability is another important factor structuring
carnivore communities (Karanth et al., 2017; Srivathsa
et al., 2023) as it often governs the density and distribution
of predators, and consequently their intensity of competi-
tion (Périquet et al., 2015; Shao et al., 2021). Dietary
partitioning can facilitate coexistence among species
(Pianka, 1974), but in areas of lower prey diversity, die-
tary overlap and thus competition are expected to
increase among predators (Polis et al., 1989). Given
that predators should differentiate along other niche
dimensions when dietary overlap is high (e.g., spatial
partitioning; Schoener, 1974), prey diversity has the
potential to mediate spatial avoidance of competitors
within a predator community. The abundance of a pri-
mary prey species can be an equally important factor
influencing predator competition (Périquet et al., 2015;
Shao et al., 2021; Wiens, 1977) and the extent of spatial
avoidance (Srivathsa et al., 2023). For example, Grassel
et al. (2015) found that black-footed ferrets (Mustela
nigripes) avoided American badgers (Taxidea taxus) in
areas with relatively low prairie dog (Cynomys spp.) den-
sities, but avoidance decreased with increasing prey den-
sity. In this case, greater availability of a single shared
prey likely reduced interference competition and facili-
tated coexistence between competitors (Grassel et al.,
2015; Pianka, 1974; Polis & Holt, 1992; Srivathsa et al.,
2023). In carnivore communities that compete over a
more diverse prey base, identifying which prey species
most strongly influence(s) coexistence could further
clarify how competition influences carnivore space use
and inform conservation efforts centered on species
interactions.

Identifying an appropriate spatiotemporal scale of
study further complicates the assessment of spatial
partitioning between competing carnivores. If the spatio-
temporal scale(s) at which carnivores respond to each
other do not match the scales at which interactions are
measured, evidence of competitive interactions, or lack
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thereof, may be overlooked or misinterpreted. Further,
dominance hierarchies within a carnivore community
influence the trade-offs that competitors make and the
spatiotemporal scales at which they are observed. Human
impacts aside, the spatial distributions of large carnivores
are typically influenced by prey availability whereas the
distributions of smaller subordinate carnivores reflect a
trade-off between prey availability and safety from domi-
nant carnivores (Polis & Holt, 1992; Prugh et al., 2023;
Thompson & Gese, 2007; Vanak et al., 2013), where pri-
oritization of food or safety may differ with scale
(Broekhuis et al., 2013; Dröge et al., 2017; Vanak et al.,
2013). For example, cheetahs in northern Botswana pri-
oritized resource acquisition at larger spatial scales but
avoided dominant predators (lions and hyenas) at finer
scales (Broekhuis et al., 2013). The scale of observation
further influences our ability to make inferences about
competing carnivores (Blanchet et al., 2020; Cusack
et al., 2017). Competition is assumed to be less important
in structuring species distributions at broader scales
(Godsoe et al., 2015; King et al., 2021; Sober�on, 2007),
and many interspecific interactions occur at fine scales
that are challenging to detect with landscape-level sam-
pling methods (Cusack et al., 2017). Despite these known
sources of variation, studies of species interactions often
focus on a single spatiotemporal scale, potentially over-
looking important variation in the scales at which com-
petitive interactions occur (King et al., 2021). Similarly,
studies often consider interactions between only one pair
of predators despite many terrestrial ecosystems compris-
ing more than two interacting predators (Vanak et al.,
2013). Assessing competitive interactions across a range
of spatiotemporal scales and among the entire assem-
blage of carnivores in an ecosystem can therefore
improve our understanding of how interspecific competi-
tion structures carnivore communities (Cusack et al.,
2017; King et al., 2021; Levin, 1992).

In northern Idaho, USA, five predator species rely
partially or almost entirely on large ungulate prey, creat-
ing the potential for exploitative and interference compe-
tition within the carnivore community. Wolves (Canis
lupus), mountain lions (Puma concolor), black bears
(Ursus americanus), coyotes (Canis latrans), and bobcats
(Lynx rufus) are sympatric throughout this region and
share multiple prey resources (Idaho Department of Fish
and Game, 2002, 2019). Elk (Cervus canadensis) and deer
(Odocoileus spp.) are particularly important resources for
wolves, mountain lions, and black bears alike in northern
Idaho (Husseman et al., 2003; Idaho Department of Fish
and Game, 2014, 2019, 2021). Mountain lions and wolves
are the dominant predators of elk (Horne et al., 2019)
and white-tailed deer (Ganz et al., 2024) and black
bears opportunistically prey on neonatal ungulates

(Ganz et al., 2024; Idaho Department of Fish and
Game, 2014, 2019; White et al., 2010). Coyotes are also an
important predator of 0–6-month-old white-tailed deer
young-of-year (Ganz et al., 2024) and both coyotes and
bobcats prey on small mammals and avifauna (Idaho
Department of Fish and Game, 2019; Koehler &
Hornocker, 1991). Given the potential for competition
over multiple shared prey species, subordinate preda-
tors in this system may rely on spatial partitioning to
avoid dominant predators while maintaining access to
these shared resources. Conversely, all five predators
are also facultative scavengers and will scavenge from
and kleptoparasitize the kills of other predators
(Malesis et al., 2024; Prugh & Sivy, 2020; Ruprecht
et al., 2021). Spatial avoidance may therefore decline in
areas with greater access to carrion and in areas with
higher prey availability.

We investigated patterns of spatial overlap among the
large predator guild in northern Idaho, USA, to under-
stand how prey availability mediates spatial partitioning of
competing predators across temporal scales. Dominance
hierarchies are often size- or socially structured (Polis
et al., 1989), so we expected wolves were dominant over
all other predators because they are a group-living species
known to kill more solitary black bears, mountain lions,
and coyotes (Ballard et al., 2003). Black bears are generally
assumed to be dominant over mountain lions because
bears usurp mountain lion kills, although research sug-
gests mountain lions kill more black bears than the
reverse, making their dominance hierarchy ambiguous
(Elbroch & Kusler, 2018; Ruprecht et al., 2021). However,
we expected black bears and mountain lions were domi-
nant over bobcats and coyotes because both larger preda-
tors are much bigger than either mesopredator, mountain
lions frequently kill coyotes (Brunet et al., 2022; Ruprecht
et al., 2021), and coyote visitation rate increased in black
bear core areas when bears were hibernating (i.e., tempo-
rarily absent; Moll et al., 2021). Finally, we expected coy-
otes were dominant over bobcats because of their larger
size, more social behavior, and have been documented
killing bobcats (Kamler & Gipson, 2004). Based on this
dominance hierarchy, we hypothesized (H1) subordinate
predators spatially avoid dominant predators to red-
uce antagonistic interactions (e.g., intraguild killing;
Palomares & Caro, 1999). We therefore predicted the
space use of dominant and subordinate predators to be
negatively correlated. We further hypothesized (H2) that
prey mediate this relationship, where areas of greater
prey availability allow for greater spatial overlap among
predators by reducing competition over shared resources
(Grassel et al., 2015; Pianka, 1974; Srivathsa et al., 2023).
Thus, we predicted spatial avoidance of competing preda-
tors to decrease with increasing abundance of their
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shared prey. We also expected to observe greater evidence
of interspecific interactions at finer temporal scales than
at coarser scales because species interactions can vary
with scale (Levin, 1992) and are often more pronounced
at fine spatiotemporal scales (Broekhuis et al., 2013;
Cusack et al., 2017; Vanak et al., 2013). Finally, interfer-
ence competition and lethal interactions are often stron-
gest between taxonomically related species or ones with
high dietary overlap (Palomares & Caro, 1999). We there-
fore expected interactions to be strongest between preda-
tors in the same family (i.e., Canidae: wolf–coyote or
Felidae: mountain lion–bobcat) and predators that shared
similar prey resources (i.e., wolf–mountain lion).

We fit multispecies occupancy models (Rota et al.,
2016) and generalized linear models to camera trap data
to test our hypotheses at three temporal scales (Cusack
et al., 2017). At the coarsest scale, we estimated the effect
of habitat, prey, and competitor presence on predator
co-occupancy at an 11-week temporal scale. We then esti-
mated co-detection between predators at a 1-week tempo-
ral scale, while accounting for broad-scale space-use
patterns. And at the finest temporal scale, we estimated
the effect of prey and recent competitor presence on the
wait time between detections of sympatric predators at
the scale of hours to days. Throughout our analyses, we
focused on pairwise interactions between species that
were taxonomically related, or species we expected
would directly compete for food resources, resulting in
seven dominant–subordinate predator dyads of interest:
wolf–mountain lion, wolf–black bear, mountain lion–
black bear, wolf–coyote, mountain lion–bobcat, black
bear–coyote, and coyote–bobcat. We focused on the
summer months (1 July–15 September) when hunting
and trapping were generally not permitted in Idaho
(Idaho Department of Fish and Game, 2020), ungulate
prey were widely available and dispersed across sum-
mer range habitat, and most camera traps were
operable.

METHODS

Study areas

We collected photo-captured data from 1 July to
15 September 2020 and 2021 within three study areas in
northern Idaho, USA, comprising Idaho Department of
Fish and Game (IDFG) game management units (GMUs)
1, 6, and 10A (Figure 1). The northern study area, GMU
1 (14,648.92 km2, centered at −116.53973� E,
48.60161� N), was bounded by Canada, Washington, USA,
and Montana, USA, and the Priest River, Idaho. This
region is part of the Okanogan Highlands Ecological

Section of the Canadian Rocky Mountain Ecoregion, with
elevation ranging 518–2347m and annual precipitation
averaging 86 cm (Idaho Department of Fish and
Game, 2021). Dominant vegetation includes western hem-
lock (Tsuga heterophylla), subalpine fir (Abies lasiocarpa),
western red cedar (Thuja plicata), Douglas fir
(Pseudotsuga menziesii), and ponderosa pine (Pinus
ponderosa) (Idaho Department of Fish and Game, 2021).
We began sampling GMU 1 in July 2021. The central study
area (GMU 6; 5905.44 km2, centered at −116.20986� E,
47.20130� N) encompassed the lower St. Joe River
Drainage. The southern study area (GMU 10A;
8527.31 km2, centered at −115.88491� E, 46.58268� N) was
immediately south of GMU 6 and bisected by the
Dworshak Reservoir and North Fork Clearwater River.
These two study areas are part of the Bitterroot Mountains
Ecological Section, with annual precipitation averaging
84–97cm and elevation ranging 300–1920 m (Idaho
Department of Fish and Game, 2021). Western red cedar,
grand fir (Abies grandis), Douglas fir, and western hem-
lock forests dominate these areas (Idaho Department of
Fish and Game, 2021). GMUs 6 and 10A were monitored
in summer 2020 and 2021. All study areas were largely
owned and managed by a mixture of private timber com-
panies and the U.S. Forest Service, as well as some pri-
vate landowners, the state of Idaho, and other federal
agencies (Idaho Department of Fish and Game, 2021).

Black bears, bobcats, coyotes, mountain lions, and
gray wolves were sympatric throughout northern Idaho,
and a small population of grizzly bears (Ursus arctos) was
present in only GMU 1 (Idaho Department of Fish and
Game, 2021). Elk and white-tailed deer (Odocoileus
virginianus) were the dominant wild ungulate species in
northern Idaho, although moose (Alces alces) and mule
deer (Odocoileus hemionus) were also present (Idaho
Department of Fish and Game, 2021; Idaho Department
of Fish and Game and Nez Perce Tribe, 2016). Wolves
and mountain lions preyed on ungulates of all age classes
whereas black bears, bobcats, and coyotes primarily
preyed on neonatal ungulates in summer (Idaho
Department of Fish and Game, 2014, 2019, 2021). In
northern Idaho, white-tailed deer and mule deer parturi-
tion occurred throughout June (E. Painter-Flores,
University of Montana, unpublished data). Our study did
not include this peak period of ungulate parturition because
many cameras were not active in June owing to deploy-
ment logistics. However, bear- and mesopredator-caused
mortalities occurred up to 31 days post-parturition
(E. Painter-Flores, University of Montana, unpublished
data), meaning neonatal deer were available through July
for all focal predators. And because carrion (e.g., adult
ungulates killed by apex predators) and alternative prey
were available all summer, we assumed the potential for
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resource competition occurred among all five predators
even when neonates were unavailable.

Lagomorphs, particularly snowshoe hares (Lepus
americanus), were also common in our study areas
(Thornton et al., 2012) and were a common prey item
for mesopredators in Idaho (Hurley et al., 2011; Koehler &
Hornocker, 1991; E. Painter-Flores, University of
Montana, unpublished data). Small mammals (e.g., mice)
and avifauna were also important prey items for
mesopredators (Koehler & Hornocker, 1991; E. Painter-
Flores, University of Montana, unpublished data) but
were not frequently detected on camera owing to their
smaller size and camera deployment style. We therefore
could not consider the effect of small mammals and birds
on competition between mesopredators.

Camera data

We used HyperFire2 (Reconyx, Holmen, Wisconsin,
USA) trail cameras to monitor 750 randomly selected
sites across our three study areas. We selected 150 loca-
tions per study area using a generalized random tessella-
tion stratified (GRTS) spatially balanced sampling design
(Stevens & Olsen, 2004) implemented with the spsurvey
package version 4.1.1 (Dumelle et al., 2023). When neces-
sary, we removed random sites that fell within large bod-
ies of water, urban areas, or were inaccessible owing to
private property. As a result, cameras were generally
deployed on public land or timberlands where human
development and activity were relatively low. We placed
one un-baited camera within 30 m of each random

F I GURE 1 Map of three study areas in northern Idaho, USA. Each study area was sampled using 250 camera traps (black points) from

1 July to 15 September. Sites in game management unit (GMU) 1 (blue) were surveyed in 2021, and sites in GMUs 6 (yellow) and 10A (red)

were surveyed in 2020 and 2021. Idaho elevation base map generated from the U.S. Geological Survey Digital Elevation Model

(U.S. Geological Survey, 2004).
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location, ~1.5 m from the ground and pointing parallel to
the ground in the direction that offered the least
obstructed viewshed. This camera setup targeted the
unbiased sampling of ungulates in our study areas (here-
after referred to as “random cameras”; Moeller et al.,
2018). We paired 100 of the random cameras per study
area with a second un-baited camera, each placed within
2 km and in the same habitat type as the paired random
camera. We placed these cameras >2.5 m from the
ground on the first dirt-bottomed linear feature (e.g.,
unpaved road, game trail) encountered from the random
site, which targeted predator detections (hereafter “trail
cameras”; Jacobs & Ausband, 2018). We programmed
all cameras to both time-trigger, every 10 min, and
motion-trigger, taking three images per trigger event with
no delay between triggers. Cameras operated 1 July–15
September and monitored the same location both years
in GMUs 6 and 10A. Cameras in GMU 1 were only
deployed 1 July to 15 September 2021.

We used the Microsoft MegaDetector (Beery et al.,
2019) to detect objects (i.e., animal, human, vehicle) in
each image. The MegaDetector generates a value for
every image, ranking how confident it is about a poten-
tial object detection in the image (Beery et al., 2019).
Trained staff visually inspected all images in lower and
lower confidence levels until we were no longer finding
detections of animals. This process allowed us to focus
our efforts on reviewing images that are most likely to
contain animals and reduce the number of empty images
reviewed by humans. To further reduce false negatives,
we reviewed a random sample of unreviewed images to
ensure we were unlikely to overlook animal detections
at the lowest confidence levels. We recorded the spe-
cies present, the number of individuals, and whether
the camera was operational using Timeslapse2 software
(S. Greenberg, University of Calgary, Alberta, Canada).
We also extracted the date, time, and trigger mode from
metadata tags. We used only motion-triggered images for
subsequent analyses.

Explanatory variables

We considered the effects of prey availability, habitat
preferences, and sampling effort on predator space use
and detectability. We calculated a relative abundance
index (RAI) for each primary prey species from the cam-
era data to represent prey availability. We grouped
images into unique detection events, considering a detec-
tion to be independent when ≥30 min elapsed between
images of the same species, or a different species was
photographed (Sollmann, 2018). We summed the number
of unique detection events within a summer study period

(1 July–15 September) where ≥1 individual of a given
species was detected. We then divided this sum by the
number of days the camera was operable and multiplied
by 100 to represent species-specific RAI (Bowkett et al.,
2008; Rovero & Marshall, 2009). We used the RAI of four
primary prey species in subsequent analyses: elk, moose,
white-tailed deer, and lagomorphs. We assumed the RAI
reflected differences in the relative abundance of each
species (Tanwar et al., 2021) but recognized that RAI can
also reflect animal movement and variation in detection
probability (Broadley et al., 2019). We acknowledge that
detection probability for lagomorphs was lower at ran-
dom cameras than at road cameras owing to differences
in camera angle. We did not calculate a RAI for small
mammals or birds; we recognize that these taxa are
important prey for mesopredators (Koehler & Hornocker,
1991) with the potential to influence competition and
space use of coyotes and bobcats.

Predator space use is influenced by habitat and hunt-
ing strategy (e.g., stalking predators often prefer structur-
ally complex habitats; Davidson et al., 2012), which
should influence the distribution of predators regardless
of competition. We therefore considered three habitat
predictors—elevation, terrain ruggedness index (TRI),
and percent forest cover—that we assumed captured
broad-scale variation in terrain and vegetation across our
study areas to account for differences in habitat selection.
We extracted the elevation in meters at each camera loca-
tion from a 10-m resolution Idaho Digital Elevation Model
(DEM; U.S. Geological Survey, 2004) with the terra pack-
age version 1.6.17 (Hijmans, 2022) in Program R version
4.2.1 (R Core Team, 2022). We used the terra package to
calculate TRI to represent variability in the terrain at each
camera site (Hijmans, 2022). To calculate the percentage
of forested habitat surrounding each site, we reclassified
the 30-m resolution 2019 National Land Cover Database
(NLCD; Dewitz, 2021) into two land cover types repres-
enting forested (deciduous, evergreen, and mixed forest
cover classes) and non-forested (all other cover classes)
habitat. We then used a moving window analysis in
Program R (R Core Team, 2022) to calculate the percent-
age of forested habitat within a 100-m radius for every
pixel and extracted values at each camera location
(Ausband et al., 2023). Predators frequently use linear fea-
tures (e.g., roads, trails) to facilitate movement, so we
expected the probability of use, co-occupancy, and
co-detection would differ between sites along linear fea-
tures versus truly random locations (Iannarilli et al., 2021;
Tanwar et al., 2021). We therefore used a binary variable
(hereafter setup) to indicate whether cameras were
deployed at random locations (i.e., random cameras = 0)
or on linear features (i.e., trail cameras = 1). We tested for
collinearity and z-transformed all continuous variables.
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Multispecies occupancy models

We used single-season, multispecies occupancy models
for two or more interacting species (Rota et al., 2016) to
test for effects of habitat, prey availability, and competitor
presence on the co-occupancy of predator species.
Occupancy models use detection/non-detection data to
estimate the probability that ≥1 individual of a given spe-
cies occupies a space when detection probability is less
than perfect (MacKenzie et al., 2002). Multispecies occu-
pancy models extend this general framework by incorpo-
rating detection/non-detection data of ≥2 species and
testing whether their co-occupancy is statistically
non-independent (Rota et al., 2016). Multispecies occu-
pancy models can also estimate the effect of explanatory
variables on each species’ marginal occupancy (i.e., prob-
ability of occurring regardless of the presence of other
species), their conditional occupancy (i.e., probability of
occurring given other species is present or absent), and
their marginal and conditional detection probabilities
(Fidino et al., 2019; Kéry & Royle, 2021; Rota et al., 2016).
Linear functions that relate to just one species are consid-
ered first-order parameters, and covariate effects are
expressed as the log-odds change in occupancy for a species
when other species are absent, given a one-unit change
in the covariate (Kéry & Royle, 2021; Rota et al., 2016). For
example, f1 = log(ψ10/ψ00) = α0 + α1x1 + α2x2 and f2 =
log(ψ01/ψ00) = β0 + β1x1 + β2x2 represent the first-order
parameters for species 1 and species 2, conditional on the
other being absent (Kéry & Royle, 2021). Second-order
parameters are linear functions related to the interaction
between two species, and covariates affecting these inter-
actions reflect the difference between the log-odds
change in occupancy of both species occurring together
and the log-odds change in occupancy for each species
when the other is absent, given a one-unit change in the
covariate (Rota et al., 2016); for example, f12 = log(-
ψ11ψ00/ψ10ψ01) = γ0 + γ1x1 + γ2x2 (Kéry & Royle, 2021).
Linear functions related to detection and co-detection
probabilities follow a similar parameterization (Kéry &
Royle, 2021; Rota et al., 2016).

We included detection data from two predator species
in each multispecies occupancy model, resulting in seven
pairwise combinations (wolf–black bear, wolf–coyote,
wolf–mountain lion, mountain lion–black bear, moun-
tain lion–bobcat, black bear–coyote, coyote–bobcat). In
each dyad, we assumed the first species was dominant
over the second species but allowed for symmetric inter-
actions in the model in case the dominance hierarchy dif-
fered from expectations (e.g., relationship between black
bears and mountain lions). We used the camtrapR pack-
age version 2.2.0 (Niedballa et al., 2016) in Program
R (R Core Team, 2022) to reduce the independent

detection events for each species into binary response
variables based on whether a given species was detected
(1) or not detected (0) at each site at least once during
a 1-week (7-day) sampling occasion. This generated
species-specific detection histories for 11 7-day sampling
occasions per summer (1 July–15 September 2020 and
2021). We then combined species-specific detection histo-
ries for each predator dyad into two-species detection his-
tories with four possible observation states: 1 = neither
species detected, 2 = species 1 detected only, 3 = species
2 detected only, 4 = both species detected. Finally,
because we were not interested in temporal dynamics in
occurrence across years, we stacked the 2020 and 2021
detection histories to increase our sample size for each
pairwise analysis (Rød-Eriksen et al., 2023). We initially
included a random effect for site on the first-order
parameter of each species (f1 and f2) to account for repeat
measures at sites that were sampled both years (sites in
GMU 6 and 10A). The inclusion of random effects
resulted in unstable likelihoods and poor model conver-
gence. We therefore treated observations from sites that
were sampled both years as independent and included a
binary variable for sampling year (year 1 = 0; year 2 = 1)
to help account for repeat measures. We acknowledge
that ignoring pseudo-replication in our data may result in
overly precise estimates of variance.

We fit a set of nested occupancy models to each
two-species detection history (Table 1). We developed a
null model with only year as a first-order slope parame-
ter on occupancy, and a baseline habitat model that
included camera setup (random vs. trail), year, and hab-
itat variables (percent forest cover, elevation, and ter-
rain ruggedness) as first-order slope parameters on
occupancy (Table 1). The habitat model tested whether
basic habitat features influenced predator occurrence
and assumed no dependency between species. In subse-
quent models, we then added the abundance index of
different primary prey species as additional first-order
slope parameters on occupancy (Table 1). The specific
prey species included in the first-order parameters of
the prey abundance model depended on the individual
predator species f1 and f2. Based on the primary prey
species of each predator in northern Idaho, we included
the RAI for elk, moose, and white-tailed deer in the
first-order parameter for wolves, elk and white-tailed
deer in the first-order parameters for black bears and
mountain lions, and white-tailed deer and lagomorphs
in the first-order parameters for coyotes and bobcats.
The prey abundance model tested whether the relative
abundance of the primary prey for each predator
influenced predator occurrence while accounting for
habitat preferences, but still assumed no dependency
between predator species.

ECOLOGICAL MONOGRAPHS 7 of 25
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We then added second-order interactions to the habitat
and prey abundance models (Table 1). The interaction
habitat model was identical to the baseline habitat model
but included a second-order interaction (f12;
intercept-only) to test whether predators aggregated or seg-
regated more than would be expected by chance after
accounting for their individual habitat use. The interaction
prey abundance model was identical to the prey abun-
dance model but included the second-order
interaction and camera setup and RAI of different primary
prey species as second-order slope parameters (Table 1).
All primary prey species included in the first-order param-
eters (f1 and f2) were included in the second-order parame-
ter (f12) for a given predator pairing. The interaction prey
abundance model tested whether the relative abundance
of primary prey influenced the non-independent aggrega-
tion or segregation of co-occurring predators after account-
ing for predator-specific habitat use. Finally, we included
camera setup and weekly sampling effort (i.e., number of
days per 1-week sampling occasion that camera was opera-
tional) as first-order slope parameters on detection in all
but the null model to account for species-specific variation
in detection probability.

We fit models within a Bayesian framework, imple-
mented in JAGS version 4.3.1 (Plummer, 2017) with the
jagsUI package version 1.5.2 (Kellner & Meredith, 2021)
and Program R version 4.2.1 (R Core Team, 2022). We
used non-informative priors for all parameters (uniform
between 0 and 1 for logit-transformed intercepts and nor-
mal with μ = 0 and τ = 0.1 for slopes) (Kéry & Royle,
2021). We ran three chains for each model, retaining
every 10th observation for 75,000 iterations after an adap-
tation phase of 1000 and a burn-in phase of 15,000 itera-
tions. We increased the number of iterations to 100,000
for the coyote–bobcat and mountain lion–bobcat models
to improve model convergence. When necessary, we pro-
vided informed initial values based on estimates from
each null model to improve the convergence of more
complex models. We reviewed trace plots and the
Gelman-Rubin convergence diagnostics (Gelman & Rubin,
1992) to assess adequate convergence. We compared can-
didate models for each predator pairing with the deviance
information criterion (DIC; Spiegelhalter et al., 2002) to
identify the best supported model from our candidate set
and considered all models within 2 ΔDIC to be well
supported by the data. We calculated ΔDIC and model
weights with the R package AICcmodavg version 2.3.3
(Mazerolle, 2023). We assessed model goodness-of-fit for
the detection sub-model of each best supported model by
calculating a Bayesian p-value (pB) from χ2 discrepancies
using posterior predictive checks (Conn et al., 2018;
Gelman et al., 1996). Bayesian p-values that equal 0.5 indi-
cate a perfect fit whereas extreme values (e.g., pB < 0.1 or
pB > 0.90) indicate the model does not adequately repre-
sent the data (Conn et al., 2018; Hobbs & Hooten, 2015).
We considered slope parameters and the second-order
intercept to be supported in these top models if the 95%
credible intervals (CRI) of the posterior distribution
excluded 0 (Kéry, 2010). We then predicted and plotted
the marginal and conditional occupancy probabilities for
each predator pairing across a range of values for each
covariate while holding all other covariates at their mean
value to visualize how competition, habitat, and prey
influenced predator occurrence and co-occurrence.

We note that because the detection area of a camera
is small relative to the movement and home range size of
our focal species, camera data typically violate the occu-
pancy model’s assumption that sites (i.e., the camera
viewshed) are closed to changes in the occupancy state
during the sampling period (Burton et al., 2015; Cusack
et al., 2017; Lonsinger, 2022; MacKenzie et al., 2006).
Cameras in relatively close proximity (i.e., paired random
and trail cameras) may also violate the spatial indepen-
dence assumption of occupancy models (Cusack et al.,
2017; MacKenzie et al., 2006). As a result, animals do not
continuously occupy the area in front of a camera but are

TAB L E 1 Set of multispecies occupancy models used to test

the influence of competitor presence and prey availability on the

spatial overlap of predator species in a multi-predator community

in northern Idaho, USA, from 1 July to 15 September 2020–2021
(covariates included in the first-order parameters [f1 and f2] and

second-order parameter [f12] are grouped into categoriesa for

simplicity).

Model

Linear predictors in
first-order
parametersb

Linear
predictors

in second-order
parameterb

Null Year 0

Habitat Setup + year + habitat 0

Prey abundance Setup + year +
habitat + prey
relative abundance

0

Interaction habitata Setup + year + habitat Intercept

Interaction prey
abundancea

Setup + year +
habitat + prey
relative abundance

Setup + prey
relative
abundance

aInteraction models include a second-order parameter that estimates the
effect the presence and absence of one species has on the probability of site
use by another species.
bCovariate categories included in the first- and second-order parameters

relate to sets of different covariates: Setup = binary variable for random (0)
or trail (1) camera setup where random cameras represent the intercept;
year = binary variable for year 1 (0) or year 2 (1) of sampling;
habitat = percent forest cover, elevation, and terrain ruggedness; prey

relative abundance = relative abundance index for elk, moose, white-tailed
deer, and/or lagomorphs.
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present more broadly (occupying an area of unknown
size) and detection at one site may be correlated with
detection at a nearby site. We therefore assumed animal
movement in and out of a camera site was random and
interpreted occupancy results as the probability of use
(i.e., asymptotic occupancy where the probability a site
was used approached 1.0 asymptotically over the
11-week sampling period; Burton et al., 2015; Efford &
Dawson, 2012; Lonsinger, 2022). The probability an ani-
mal was available for detection is implied in the detec-
tion process because an animal must be available at the
site to be detected, given the site is used/occupied
(Burton et al., 2015).

Assuming interactions are “static” over an 11-week
period ignores the dynamic nature of species interactions
whereas evaluating the detection process can yield pat-
terns more representative of the timescale at which inter-
specific interactions occur (Cusack et al., 2017). We
therefore tested the dependency between predator detec-
tion probabilities on a weekly time scale in addition to the
co-occupancy analysis. We added a second-order interac-
tion term to the detection sub-model of the best supported
occupancy model for each species pair and refit the model
following the same JAGS specifications described above.
This parameterization tested whether the probability of
detecting both predators during a 1-week sampling occa-
sion was statistically non-independent. We interpreted
co-detection as evidence of a behavioral response between
predators, as detection probability can reflect frequency of
use (Popescu et al., 2014) and the magnitude of animal
movement (Stewart et al., 2018), both of which we would
expect to be affected by recent detection (within 1 week)
of a heterospecific competitor.

Wait times following competitor detection

Finally, we evaluated fine-scale spatiotemporal responses
by estimating the wait time between the detections of dif-
ferent predator species. We retained the first and last
image of every independent detection event and then fil-
tered these images to only include series of images where
one predator species was detected immediately after a dif-
ferent predator species. We required no other species
(including humans) be detected between predator detec-
tions to ensure we only evaluated predator responses to
predator presence and not other intervening non-predator
animals (Karanth et al., 2017). We then calculated the
number of hours between detections of different predator
species. We excluded wait times ≥7 days from our analyses
because we were interested in predator interactions at a
timescale finer than a 1-week period (i.e., hourly- to
daily-timescale).

We fit a set of exponential models to test the effects of
recent competitor presence and local prey availability on
the mean wait time for each predator species using the
number of minutes between detections of different preda-
tor species as the response variable (Table 2). Specifically,
we assumed observed wait times (y) followed the expo-
nential distribution (Appendix S1: Figure S1) with rate
parameter λ, that is, y ~ Exp(λ), where λ = e1/βX, β is a
vector of coefficients, and X is a matrix of site-specific
covariates (Bassing, 2022). We first fit a null model and
two baseline models that included different variables
representing either the identity of the competitor
detected immediately prior to the focal predator or rela-
tive prey abundance (Table 2). The competitor model
contained a categorical variable with four factor levels
representing each of the previously detected competing
predator species (competitor ID), whereas the prey abun-
dance model included the RAI of different primary prey
species based on the focal predator (e.g., the coyote model
included white-tailed deer and lagomorph RAIs; Table 2).
We then fit models using a combination of competitor ID
and prey availability variables, allowing the covariates to
have additive or interactive effects on wait time (Table 2).
The global model combined all covariates and included
interactions between competitor ID and RAI (Table 2).

We expected the wait times would be longer for a
predator following the detection of a competitor com-
pared with the wait times following a prey species if preda-
tors avoided competitors but were attracted to prey at a
fine spatiotemporal scale. We therefore conducted a simi-
lar analysis, this time calculating the number of hours
between detections of a prey species immediately followed

TABL E 2 Set of exponential models used to test the effects of

recent competitor presence and local prey availability on the mean

wait time for each predator species in northern Idaho, USA, from 1

July to 15 September 2020–2021.

Model Linear predictorsa

Null Intercept only

Competitor Competitor ID

Prey abundance Prey relative abundance

Competitor–prey abundance Competitor ID + prey
relative abundance

Competitor × prey abundance Competitor ID + prey
relative abundance +
(competitor ID × prey
relative abundance)

aCovariate groups relate to sets of different covariates used as linear

predictors: Competitor ID = categorical variable with four levels indicating
the predator species detected immediately prior to the focal predator species;
prey relative abundance = relative abundance index for elk, moose,
white-tailed deer, and/or lagomorphs.
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by a predator. We replaced the categorical competitor
ID variable with a categorical prey ID variable in the
prey–predator models, using only the primary prey species
of the predator in their respective models. We fit the wait
times to only the null, two baseline, and global models,
excluding interactions from the global model, because we
were only interested in estimating the mean number of
hours between detections of prey and predators as a com-
parison to the predator–predator models.

We fit models within a Bayesian framework, imple-
mented in JAGS version 4.3.1 (Plummer, 2017) with the
jagsUI package version 1.5.2 (Kellner & Meredith, 2021)
and Program R version 4.2.1 (R Core Team, 2022). We
used non-informative priors for all parameters (normal
with μ = 0 and τ = 0.01). We ran 3 chains for each
model, retaining every 10th observation for 30,000 itera-
tions after an adaptation phase of 1000 and a burn-in
phase of 5000 iterations. Following the same model selec-
tion and convergence diagnostics as described above, we
then predicted and plotted the wait times across a range
of values for each statistically supported covariate while
holding all other covariates at their mean value to visual-
ize how competition and prey influenced predator wait
times. We assessed model goodness-of-fit for each best
supported model by calculating a Bayesian p-value (pB)
from χ2 discrepancies using posterior predictive checks
(Conn et al., 2018; Gelman et al., 1996).

RESULTS

A total of 493 cameras were operable in 2020 and
710 cameras in 2021. Cameras generated on average
497.20 (SE = 150.27) independent detections per predator

species per summer (Table 3) and were operable on aver-
age 67 days (SE = 0.49) of the 77-day study period per
summer. Relative abundance indices (RAI; i.e., mean
daily detection rate) of prey species detected on camera
suggested white-tailed deer were the most abundant prey
species whereas moose and mule deer were the least
abundant prey species in our system (Appendix S1:
Table S1).

Multispecies occupancy models

Mean detection and marginal occupancy probabilities
varied by species. Bobcats, mountain lions, and wolves
had the lowest detection and marginal occupancy prob-
abilities whereas coyotes had the highest detection
probability and black bears had the highest marginal
occupancy probability (Table 3). Marginal occupancy var-
ied annually for wolves and black bears; wolf occupancy
declined whereas black bear occupancy increased in sum-
mer 2021 when compared to summer 2020 (Table 3).

The most supported model identified by DIC varied
by predator dyad. Most top models did not include a
second-order interaction term, indicating predators gen-
erally co-occurred independently of one another (Table 4;
Appendix S1: Table S2). Only the coyote–bobcat and
black bear–coyote models included a second-order inter-
action between species (Table 4). The habitat model was
most supported in the wolf–coyote analysis (Table 4).
The null and habitat models were both supported (within
2 ΔDIC) in the wolf–black bear analysis; we interpreted
results from the habitat model below (Table 4;
Appendix S1: Table S2). The null model was considered
the most supported model for any dyad that included

TAB L E 3 Summary of predator detection data and predicted mean marginal occupancy and detection probabilities and 95% credible

intervals (CRI) for each species (using the null model in Table 1) using data collected from camera traps deployed in northern Idaho, USA,

from 1 July to 15 September 2020 and 2021.

Species Year
Total detection

events
Cameras

with detections
Proportion cameras

with detections
Mean occupancy

(95% CRI)
Mean detection

(95% CRI)

Black bear 2020 425 220 0.48 0.64 (0.57, 0.71) 0.19 (0.17, 0.20)

2021 929 413 0.61 0.77 (0.71, 0.82) 0.19 (0.17, 0.20)

Bobcat 2020 210 100 0.22 0.28 (0.23, 0.33) 0.16 (0.15, 0.18)

2021 288 147 0.22 0.26 (0.23, 0.30) 0.16 (0.15, 0.18)

Coyote 2020 1125 241 0.52 0.83 (0.78, 0.87) 0.19 (0.17, 0.21)

2021 1407 343 0.51 0.80 (0.76, 0.84) 0.19 (0.17, 0.21)

Mountain lion 2020 125 80 0.17 0.30 (0.24, 0.38) 0.09 (0.08, 0.11)

2021 182 122 0.18 0.29 (0.24, 0.36) 0.09 (0.08, 0.11)

Wolf 2020 152 83 0.18 0.46 (0.37, 0.56) 0.08 (0.05, 0.12)

2021 129 81 0.12 0.32 (0.25, 0.39) 0.08 (0.05, 0.12)
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mountain lions (Table 4). Aside from the wolf–black
bear analysis, the top model for each dyad had a large
difference in DIC compared with the next best model
(ΔDIC ranged 17.56–445.66) and carried 100% of the
weight in each model set (Appendix S1: Table S2). The
null and habitat models carried 70% and 30% of
the weight, respectively, in the wolf–black bear model set
(Appendix S1: Table S2). Bayesian p-values ranged from
0.33 to 0.50, indicating reasonable fit. However, a closer
examination of the χ2 discrepancy statistics showed the
models tended to fit well for only the more detectable spe-
cies. This likely indicates we failed to account for all
sources of heterogeneity in the detection process (i.e.,
missing covariates) or that discretizing camera trap data
induced some lack of fit (Kleiven et al., 2023).

Wolf and black bear co-occupancy was not related to
the presence of the other predator, but their marginal use
probabilities did differ in response to habitat features
(Table 5). After accounting for annual differences in site
use for each species, we found that wolves were more
likely to use higher elevations but less likely to use
more rugged terrain (Figure 2). We found weak evidence
(95% CRI of posterior mean overlapped 0 slightly) that
wolf site use also increased with the percentage of forest
cover (bβForest ¼ 0:20, 95% CRI=−0.04 to 0.45; Table 5,
Figure 2). Conversely, black bears were more likely to use
more rugged terrain, areas with a higher percentage of for-
est cover, and higher elevations, although evidence
supporting the elevation effect was weak (bβElevation ¼ 0:13,
95% CRI=−0.03 to 0.29; Table 5, Figure 2). Both preda-
tors were more likely to use sites along linear features
(i.e., hiking trails, roads, game trails) than random sites
(Table 5; Appendix S1: Figure S2). The probability of
detecting wolves on camera during a 1-week sampling

period increased with the number of days a camera was
operable whereas black bear detection probability did not
vary with sampling effort or camera placement
(Appendix S1: Table S3).

Wolf and coyote co-occupancy was also not related to
the presence of the other predator, and instead, variation
in habitat use likely explained any spatial overlap at the
11-week temporal scale (Table 5). As in the wolf–black
bear model, the probability of site use for wolves
increased with elevation and forest cover and decreased
in more rugged terrain (Table 5, Figure 2). Coyotes were
less likely to use sites as the percentage of forest cover
increased and as ruggedness increased (Table 5, Figure 2).
Site use was higher for both canids along linear features
compared with random sites (Table 5; Appendix S1:
Figure S2) and their detection probabilities increased with
sampling effort (Appendix S1: Table S3). Coyotes were also
more detectable at trail sites than at random sites
(Appendix S1: Table S3).

The coyote–bobcat pairing was one of the only preda-
tor dyads with evidence of dependent co-occupancy,
where the conditional probability of use by either species
increased if the other species also used that site (Table 5,
Figure 3). However, the best supported model did not
include covariates on the interaction term, suggesting
co-occupancy did not vary with the relative abundance of
white-tailed deer or lagomorphs. As in the wolf–coyote
model, coyote site use declined with increasing forest
cover and terrain ruggedness (Table 5, Figure 2). Bobcats
were more likely to use a site as the percentage of forest
cover increased, and we found weak support that bobcats
used more rugged terrain, although the 95% CRI of the
posterior mean overlapped 0 slightly (bβTRI ¼ 0:15, 95%
CRI=−0.06 to 0.35; Table 5, Figure 2). Both species were

TAB L E 4 Best supported multispecies occupancy model for each predator dyad as indicated by model selection using deviance

information criterion (DIC) using data collected from camera traps deployed in northern Idaho, USA, from 1 July to 15 September 2020

and 2021.

Predator pair Model Linear predictors on first-order parametersa
Linear predictors on

second-order parametersb

Wolf–black bear Habitat Setup + year + forest cover + elevation + ruggedness 0

Wolf–coyote Habitat Setup + year + forest cover + elevation + ruggedness 0

Black bear–coyote Interaction habitat Setup + year + forest cover + elevation + ruggedness Intercept

Coyote–bobcat Interaction habitat Setup + year + forest cover + elevation + ruggedness Intercept

Wolf–mountain lion Null Year 0

Mountain lion–black bear Null Year 0

Mountain lion–bobcat Null Year 0

Note: Linear predictors included in the first-order parameters (f1 and f2) and second-order parameter (f12) of each best supported model are provided. The full

set of competing models, as well as their associated DIC model rankings, are reported for each predator dyad in Appendix S1: Table S2.
aCovariates included in the first-order parameters include: Setup = binary variable for random (0) or trail (1) camera setup, where random cameras represent
the intercept; year = binary variable for year 1 (0) or year 2 (1) of sampling.
bBest supported models that included a second-order parameter included only an intercept (1) and no covariates.
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TAB L E 5 Posterior means and 95% credible intervals (CRI) for coefficients included in the best supported multispecies occupancy

model for pairs of predator species in northern Idaho, from 1 July to 15 September 2020–2021.

Species 1 Species 2 Covariatea
Species 1 alone

[mean (95% CRI)]
Species 2 alone

[mean (95% CRI)]
Both speciesb

[mean (95% CRI)]

Wolf Black bear Intercept −2.26 (−2.78, −1.73) 0.11 (−0.16, 0.39) NA

Wolf Black bear Trail setup 2.12 (1.55, 2.68) 0.46 (0.12, 0.81) NA

Wolf Black bear Year 2 −0.63 (−1.06, −0.21) 0.62 (0.31, 0.94) NA

Wolf Black bear Forest cover 0.20 (−0.04, 0.45)c 0.33 (0.18, 0.48) NA

Wolf Black bear Elevation 0.29 (0.08, 0.50) 0.13 (−0.03, 0.29)c NA

Wolf Black bear TRI −0.31 (−0.56, −0.07) 0.20 (0.05, 0.37) NA

Wolf Mountain lion Intercept −1.00 (−1.29, −0.71) −0.84 (−1.15, −0.51) NA

Wolf Mountain lion Year 2 −0.60 (−0.96, −0.25) −0.04 (−0.40, 0.32) NA

Wolf Coyote Intercept −2.26 (−2.78, −1.73) −0.46 (−0.72, −0.21) NA

Wolf Coyote Trail setup 2.12 (1.55, 2.67) 2.06 (1.75, 2.37) NA

Wolf Coyote Year 2 −0.63 (−1.06, −0.22) −0.18 (−0.48, 0.12) NA

Wolf Coyote Forest cover 0.20 (−0.03, 0.45)c −0.18 (−0.33, −0.03) NA

Wolf Coyote Elevation 0.29 (0.07, 0.50) −0.06 (−0.21, 0.09) NA

Wolf Coyote TRI −0.31 (−0.56, −0.07) −0.36 (−0.51, −0.21) NA

Mountain lion Black bear Intercept −0.84 (−1.15, −0.51) 0.28 (0.06, 0.51) NA

Mountain lion Black bear Year 2 −0.04 (−0.40, 0.32) 0.58 (0.28, 0.88) NA

Mountain lion Bobcat Intercept −0.84 (−1.15, −0.51) −0.94 (−1.19, −0.70) NA

Mountain lion Bobcat Year 2 −0.05 (−0.41, 0.32) −0.08 (−0.39, 0.23) NA

Black bear Coyote Intercept 0.13 (−0.17, 0.45) −0.44 (−0.76, −0.12) NA

Black bear Coyote Trail setup 0.49 (0.12, 0.87) 2.07 (1.76, 2.38) NA

Black bear Coyote Year 2 0.62 (0.31, 0.94) −0.17 (−0.47, 0.13) NA

Black bear Coyote Forest cover 0.33 (0.18, 0.48) −0.17 (−0.33, −0.02) NA

Black bear Coyote Elevation 0.13 (−0.03, 0.29)c −0.05 (−0.20, 0.10) NA

Black bear Coyote TRI 0.20 (0.04, 0.37) −0.36 (−0.51, −0.21) NA

Black bear Coyote Interaction … … −0.05 (−0.42, 0.31)

Coyote Bobcat Intercept −0.66 (−0.94, −0.38) −2.54 (−3.13, −1.94) NA

Coyote Bobcat Trail setup 1.71 (1.38, 2.05) 1.49 (0.93, 2.00) NA

Coyote Bobcat Year 2 −0.18 (−0.48, 0.12) 0.02 (−0.34, 0.40) NA

Coyote Bobcat Forest cover −0.24 (−0.40, −0.08) 0.36 (0.16, 0.58) NA

Coyote Bobcat Elevation −0.05 (−0.21, 0.10) 0.01 (−0.18, 0.20) NA

Coyote Bobcat TRI −0.40 (−0.56, −0.24) 0.15 (−0.06, 0.35)c NA

Coyote Bobcat Interaction … … 1.30 (0.83, 1.78)

Note: Columns indicate the two species included in each analysis (species 1 and species 2), covariates included in the top model, coefficient estimates [mean
(95% CRI)] influencing the conditional probability of site use for each species in the absence of the other (species 1 alone and species 2 alone), and coefficient

estimates influencing the conditional probability of site use for each species given the other also uses the site (both species). Bold font indicates the species and
covariates where the 95% CRIs excluded 0 and were considered statistically important relationships. NA indicates parameters not included in the best
supported model; “…” indicates this column is not relevant.
aRandom sites in year 1 represent the intercept for conditional site use for each species when the other is absent. Random sites represent the intercept for
conditional site use for both species together.
bSpecies co-occurrence is considered non-independent if the 95% CRI of the interaction intercept (both species) excludes 0. NAs indicate the model did not
include an interaction term and/or the covariate was not included in the interaction.
cCoefficient was interpreted as having marginal support because the 95% CRI of the posterior mean overlapped 0.
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more likely to use sites and be detected by cameras along
linear features compared with random sites (Table 5;
Appendix S1: Table S3, Figure S2). Finally, sampling
effort did not influence weekly detection probability of
bobcats whereas it positively influenced detection proba-
bility of coyotes (Appendix S1: Table S3).

The best supported model for black bear–coyote
co-occupancy included a negative second-order interac-
tion term (Table 5). However, the 95% CRI of the poste-
rior distribution included 0 and the magnitude of the
interaction was small (posterior mean bγ0 ¼ − 0:05, 95%
CRI=−0.42 to 0.31), suggesting no statistical evidence of
spatial avoidance between black bears and coyotes at the
11-week temporal scale. Instead, difference in habitat use
likely explained any apparent spatial avoidance. As in the
models described above, forest cover and terrain rugged-
ness had a positive effect on the marginal probability
of black bear site use whereas they had a negative
effect on coyote site use (Table 5, Figure 2). Elevation
did not influence coyote site use, but we found weak
evidence that black bears were more likely to use higher
elevations (bβElevation ¼ 0:13, 95% CRI=−0.03 to 0.29;
Table 5, Figure 2). Both species were more likely to
use sites along linear features although the magnitude of
the effect was much larger for coyotes (black bear
bβSetup ¼ 0:49 95%CRI¼ 0:12 – 0:87½ � vs. coyote bβSetup ¼ 2:07

95%CRI¼ 1:76 – 2:38½ �; Table 5; Appendix S1: Figure S2).
Coyotes were more detectable at trail sites compared with
random sites and as sampling effort increased, whereas
neither influenced the detection probability of black
bears (Appendix S1: Table S3).

Finally, we found that detection probability was
influenced by the detection of a competitor for three of
the seven dyads once we included a second-order interac-
tion in the detection sub-model. Wolves and coyotes,
mountain lions and bobcats, and coyotes and bobcats
were more likely to be detected within a 1-week sampling
occasion if the other species was also detected at the
same site within that same time period (Figure 4;
Appendix S1: Table S4). Weekly detection probability was
highest for coyotes, particularly when bobcats or wolves
were also detected (Figure 4; Appendix S1: Table S4).
Weekly detection probability was lowest for mountain
lions and wolves and only increased marginally when
bobcats or coyotes were also detected, respectively
(Figure 4; Appendix S1: Table S4).

Wait times

Model selection indicated that wait time models that
included the type of competitor previously detected

F I GURE 2 Effect of (a) percent forest cover, (b) elevation, and (c) terrain ruggedness on the predicted marginal probability of site use

for black bears, bobcats, coyotes, and wolves at trail sites in northern Idaho, 1 July–15 September 2020–2021. The posterior mean for each

species and covariate relationship is represented by the dark line, and the 95% credible intervals (CRI) are represented by the

semi-transparent ribbons. Only relationships where the 95% CRI did not include 0 are presented. The marginal probability of site use was

lower at random sites; refer to Appendix S1: Figure S2.
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F I GURE 3 Legend on next page.
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and/or the relative abundance of prey were most
supported when estimating the mean wait time between
detections of heterospecific predators. The prey abun-
dance model was most supported in the bobcat, moun-
tain lion, and wolf analyses (Appendix S1: Table S5). The
competitor–prey abundance model, with additive effects
for competitor ID and prey abundance, was the second
most supported model (0.90 ΔDIC) in the bobcat analysis
(Appendix S1: Table S5). The competitor × prey abun-
dance model, with interactions between competitor ID
and prey abundance, was most supported in the coyote
analysis. The null and prey abundance models were both
supported (≤2 ΔDIC) in the black bear analysis
(Appendix S1: Table S5). Model selection further indi-
cated that the mean wait time between detections of a
prey species and a predator was best described by the rel-
ative abundance of primary prey but not the prey species

most recently detected (Appendix S1: Table S6). Bayesian
p-values ranged from 0.49 to 0.77 across analyses, indicat-
ing no lack of fit of our models to the data.

Predator wait times varied in response to the recent
detection of a competitor species, whereas wait times
were consistently shorter as the relative abundance of
primary prey increased. Based on the posterior means
from each of the most supported models, we found that
bobcat wait times were shorter following the detection
of a mountain lion (x¼ 13:55h, 95% CRI= 5.72–30.50 h)
than wait times following the detection of any other
competitor species (Figure 5). Bobcat wait times were
longer following a coyote detection (x¼ 36:7h, 95%
CRI= 21.75–62.07 h) than wait times following a black
bear or mountain lion detection (Figure 5). Coyote wait
times were shorter following the detection of a wolf
(x¼ 20:20h, 95% CRI= 14.04–29.05 h) than wait times

F I GURE 3 Influence of percent forest cover and terrain ruggedness on the predicted probability of use for coyotes and bobcats,

conditional on whether the other predator was present or absent from sites in northern Idaho, USA, 1 July–15 September 2020–2021.
Predictions include the effect of sites being on linear features (i.e., trail sites). Elevation did not influence coyote or bobcat site use and was

not plotted here. Bobcat silhouette was created by Margot Michaud and is available for reuse under the CC0 1.0 Universal Public Domain

Dedication license at https://www.phylopic.org/. Coyote silhouette was created by Gabriela Palomo-Munoz and is available for reuse under

the Attribution-NonCommercial 3.0 Unported license at https://www.phylopic.org/.

F I GURE 4 Mean detection probability for bobcats, coyotes, mountain lions, and wolves, conditional on whether a competitor was also

observed at the same site during a 1-week sampling occasion in northern Idaho, USA, 1 July–15 September 2020–2021. For each predator

dyad, species-specific detection probability was higher when the competing species was also observed. Estimates represent the mean

probability of detecting a predator along linear features (i.e., trail sites) with average sampling effort (x¼ 6:10 days=week, SE= 0.02). Bars

represent 95% credible intervals.
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following any other competitor species (Figure 5). Wait
times for black bears, mountain lions, and wolves did not
differ with the competitor species previously detected
(Figure 5; Appendix S1: Table S7). However, models with
moderately less support (≤5 ΔDIC) that included the
effect of competitor species indicated that mountain lion
wait times were longer following the detection of a black
bear than wait times following most other competitor
species (Figure 5). We note these results are based on a
limited sample size (n= 16 observations of a mountain
lion detected immediately after a black bear). Black bear
wait times were shorter following a mountain lion detec-
tion compared with a wolf detection (Figure 5). Wait
times declined as the relative abundance of white-tailed
deer increased across sites for bobcats, mountain lions,
and wolves (Figure 6). Wait times also declined for
mountain lions and black bears as the relative abundance
of elk increased, although the upper limit of the 95% CRI
for the elk effect on black bear wait times slightly

overlapped 0 (Figure 6; Appendix S1: Table S7, Figure S3).
Coyote wait times were affected by an interaction between
the species of competing predator and prey relative abun-
dance. Mean wait time for coyotes declined at a faster rate
with increasing white-tailed deer relative abundance when
wolves were most recently detected compared with other
competitors (Figure 6; Appendix S1: Table S7, Figure S3).

DISCUSSION

Interspecific interactions between competing predators
have the potential to shape wildlife communities and are
an important consideration when making conservation
and management decisions (Connell, 1983; Linnell &
Strand, 2000). Yet, the strength and type of interaction
(e.g., competitive vs. facilitative) can vary across spatio-
temporal scales and depend on the dominance hierarchy
of sympatric species, complicating the study of

F I GURE 5 Mean wait time before a black bear, bobcat, coyote, mountain lion, or wolf was detected following the recent detection of a

different species. Bars represent 95% credible intervals sampled from their posterior distributions. Wait times following the detection of each

predator’s primary prey species (i.e., lagomorphs, elk, moose, or white-tailed deer) were estimated with a separate model; mean wait time

following the detection of a primary prey animal is presented for comparison.
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interspecific interactions (Broekhuis et al., 2013; Cusack
et al., 2017; Prugh & Sivy, 2020). We investigated preda-
tor space use across three temporal scales, focusing on
seven species dyads comprising five sympatric predators,
to better understand how competition and prey availabil-
ity influenced the co-occurrence and habitat use of preda-
tors in a multi-predator system. Our results were
generally inconsistent with our spatial avoidance hypoth-
esis (H1) as we detected few instances of negative
co-occurrence between predators. When we observed

significant co-occurrence, correlations were positive and
often conserved between the same predator dyads at sev-
eral temporal scales. We found moderate support for our
prey mediation hypothesis (H2) as prey availability, espe-
cially the relative abundance of white-tailed deer,
influenced predator space use at the finest temporal scale
we examined. Dominance hierarchies and the temporal
scale of observation further influenced whether we found
evidence of predator interactions. Mesopredators demon-
strated the strongest response to interspecific interactions

F I GURE 6 Effect of relative abundance index of white-tailed deer on the predicted wait times (mean number of hours) before a bobcat,

coyote, mountain lion, or wolf was detected following that of a competing predator species in northern Idaho, USA, 1 July–15 September

2020–2021. Wait times for bobcats were further influenced by an additive effect of the species of competing predator previously detected.

Coyote wait times were affected by an interaction between the previously detected competing predator and the relative abundance of prey.

Solid lines represent mean wait time predicted across a range of values for the relative abundance of prey; semi-transparent colors represent

their 95% credible intervals. Bobcat and wolf silhouettes were created by Margot Michaud and are available for reuse under the CC0 1.0

Universal Public Domain Dedication license at https://www.phylopic.org/. Coyote and mountain lion silhouettes were created by Gabriela

Palomo-Munoz and are available for reuse under the Attribution-NonCommercial 3.0 Unported license at https://www.phylopic.org/.
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and prey availability, likely because their position within
the predator guild requires them to balance trade-offs
between food acquisition and risk from other predators
(De Satgé et al., 2017).

We found little evidence of spatial avoidance among
predators across the three temporal scales we investi-
gated. In general, predator occurrence, detection proba-
bilities, and wait times were independent of other
predator species. These results are consistent with
numerous other studies that failed to find evidence of
spatial avoidance within predator guilds at relatively
coarse spatiotemporal scales (e.g., Gompper et al., 2016;
Miller et al., 2018). In these studies, as with ours,
species-specific variation in habitat preferences, preda-
tor hunting mode, or tolerance to human disturbance
appeared to influence co-occurrence patterns as opposed
to interspecific competition (Broekhuis et al., 2013;
Gompper et al., 2016; Kachel et al., 2022; Krohner &
Ausband, 2019; Miller et al., 2018). The effects of inter-
specific competition can manifest in other aspects of
predator behavior or population dynamics, possibly
explaining the lack of spatial avoidance in our study.
Subordinate predators may reduce their visitation rates
to sites used by dominant predators but not avoid them
entirely (Moll et al., 2021). Dominant predators are also
known to suppress the abundances of subordinate species,
often through intraguild predation or exploitation compe-
tition (Bauder et al., 2022; Creel & Creel, 1996; Levi &
Wilmers, 2012), but not completely exclude the subordi-
nate species. And sympatric predators can temporally par-
tition space as an alternative to spatially avoiding
competitors (De Satgé et al., 2017; Schoener, 1974) as has
been observed between black bears and wolves in our sys-
tem already (Krohner & Ausband, 2019). Alternatively,
dominant predators may not limit the abundances or
space use of subordinate predators if the dominant preda-
tor’s population density is relatively low (e.g., Crimmins &
Van Deelen, 2019). Thus, competition may influence pred-
ator populations through other pathways that were chal-
lenging to detect through co-occurrence patterns in our
study.

Habitat influenced the probability of site use for black
bears, bobcats, coyotes, and wolves at the coarsest tempo-
ral scale of our study. This suggests that long-term pat-
terns of predator space use are influenced by more
predictable landscape features than relatively less predict-
able interspecific interactions (i.e., probability of competi-
tor presence or the average daily detection rate of prey).
Indeed, these habitat features may act as somewhat reli-
able cues of otherwise unpredictable processes. Predators
often use habitats preferred by their prey or habitats that
are advantageous to the predator’s hunting strategies,
presumably to increase the probability of encountering or

capturing prey, even in areas where prey are less abun-
dant (Atwood et al., 2007; Flaxman & Lou, 2009). We
found that bobcats were likely to use sites with more
structurally complex habitat (i.e., higher forest cover and
ruggedness), consistent with a stalking hunting strategy
where the predator relies on crypsis to approach and cap-
ture prey (Atwood et al., 2007). In comparison, coyotes
and wolves, both coursing predators that chase prey over
long distances, were more likely to use sites with less
structural complexity (Atwood et al., 2007). Black bears
and wolves were also more likely to use higher elevation
sites, which was consistent with the general distribution of
deer and elk on summer range in northern Idaho (Secord
et al., 1999; Unsworth et al., 1998). At the 11-week tempo-
ral scale, predators may therefore use habitat features that
predictably increase the possibility of encountering or cap-
turing prey even if the frequency of use by prey (i.e., rela-
tive abundance) is less predictable.

Species-specific differences in habitat use likely con-
tributed to why we did not find evidence of subordinate
predators spatially avoiding dominant predators (i.e.,
negative co-occupancy). Namely, each species responded
differently to the suite of habitat features we considered;
as such, even if two species used the same site within the
11-week sampling period, the frequency at which they
used the site differed. Landscape heterogeneity can
reduce the chances of negative interactions between spa-
tially overlapping predators (Müller et al., 2022). For
instance, black bears, bobcats, and wolves were all more
likely to use sites with higher forest cover, but their
respective responses to terrain ruggedness were entirely
different. Even for similar responses to a common habitat
feature (e.g., forest cover), the relative importance of that
variable in explaining marginal occupancy varied by spe-
cies. Thus, any co-occupancy appears to have been driven
largely by species-specific habitat use and not competitive
interactions. This was perhaps most evident with the
black bear–coyote dyad, where the best supported model
indicated negative co-occupancy between the two preda-
tors, yet the interaction term was not statistically mean-
ingful. Instead, the apparent spatial avoidance between
black bears and coyotes likely arose owing to completely
opposite responses to each habitat variable. Differences
in habitat use may reflect the “ghost of competition
past,” where niche partitioning coevolved between com-
petitors to reduce the effects of competition on fitness,
but the patterns we observed more likely reflect differ-
ences in species-specific life-history traits (Connell, 1980).
The results of our co-occupancy models therefore under-
score the importance of considering habitat preferences
when assessing interspecific interactions (Sober�on, 2007).

We found positive spatial associations at finer tempo-
ral scales, suggesting that attraction or facilitation, but
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generally not avoidance, influenced space use for several
predator dyads in our system. Coyotes and bobcats were
more likely to be detected if the other species, or an apex
predator (wolf or mountain lion, respectively), was also
detected during a 1-week sampling occasion. Wait times
were also shortest for mesopredators after an apex preda-
tor was most recently detected. These results are consistent
with numerous studies that observed spatial overlap, or a
lack of avoidance, between coyote–bobcat, wolf–coyote,
and mountain lion–bobcat dyads (King et al., 2021;
Koehler & Hornocker, 1991; Lombardi et al., 2020;
Paquet, 1991). Although our co-detection analysis did not
allow us to differentiate which species was detected first,
our wait time analysis explicitly considered the sequential
order of species detections, demonstrating at relatively fine
spatiotemporal scales that mesopredators were attracted to
sites recently used by apex predators. Dominant predators
pose a threat to subordinate predators (Palomares &
Caro, 1999), but it may be energetically profitable for
mesopredators to visit sites recently used by an apex pred-
ator if the reward of potential scavenging opportunities
outweighs the risk of antagonistic interactions (Malesis
et al., 2024; Prugh & Sivy, 2020; Ruprecht et al., 2021; Sivy
et al., 2017). Research in Oregon, USA, found that coyotes
were strongly attracted to mountain lion kill sites despite
mountain lions being a considerable source of mortality
for coyotes (Ruprecht et al., 2021). Similarly, Paquet (1991)
observed coyotes following wolves to kill sites even though
wolves killed coyotes. It is possible that we detected a simi-
lar process occurring within the wolf–coyote and moun-
tain lion–bobcat dyads in our system. However, without
auxiliary information on predator movement and scaveng-
ing, we cannot determine if facilitation influenced these
fine-scale spatial associations.

Prey availability strongly influenced space use for all
predator species and, in some instances, increased the
spatial overlap between predators at fine spatiotemporal
scales. Notably, predators consistently visited a site
sooner following the detection of a heterospecific where
prey (elk or white-tailed deer) was relatively more abun-
dant. Although predator responses varied by prey species,
almost all predators responded to variation in the relative
abundance of white-tailed deer at the finest temporal
scale we investigated. Abundant prey is hypothesized to
explain coexistence within predator guilds across conti-
nents (e.g., large carnivores in Africa and South and
Southeast Asia, mesopredators in North America; Gese
et al., 1996; Grassel et al., 2015; Lombardi et al., 2020;
Périquet et al., 2015; Srivathsa et al., 2023). White-tailed
deer densities were highest and the most evenly dispersed
of the wild ungulates in our study areas (Idaho
Department of Fish and Game, unpublished data). Given
the positive associations between some predators and the

general lack of spatial avoidance, it appears that rela-
tively high densities of a shared prey facilitated spatial
coexistence among northern Idaho’s large predator com-
munity. In particular, we expected coyotes would avoid
wolves, given their interactions are often highly antago-
nistic and can culminate in wolves killing coyotes
(Merkle et al., 2009; Paquet, 1991). Yet, not only were
wait times for coyotes lower following the detection of a
wolf compared with other species, but wait times
decreased at a faster rate as the relative abundance of
white-tailed deer increased. Visiting sites with higher
prey abundances that were recently used by a larger pred-
ator could be optimal for coyotes if the benefits from
scavenging and encountering prey outweigh the risks
from antagonistic interactions with dominant predators.

The dominance hierarchy of predators likely
influenced which species were affected and the scales at
which we observed interactions. Coyotes and bobcats
were involved in spatial associations across all three
scales whereas interactions involving the larger preda-
tors were only detected at finer temporal scales. Smaller
predators face greater competition as dominant preda-
tors exert top-down pressures, and predators within the
same trophic level overlap each other more closely
across niche space (De Satgé et al., 2017). It is therefore
not surprising that of all the predator dyads we consid-
ered, evidence of interspecific interactions frequently
involved mesopredators. Interestingly, we found positive
spatial associations between coyotes and bobcats at the
seasonal and weekly timescales, but a negative effect of
coyotes on bobcat space use at the hourly to daily time-
scale. Positive associations at the coarser scales may
reflect common use of a shared (but unmodeled)
resource, such as areas of higher small mammal densi-
ties. But longer wait times for bobcats following the
detection of a coyote suggest bobcats avoided areas
recently used by their larger competitor. Assuming coy-
otes are the dominant predator, these patterns likely
reflect a balancing act for bobcats, where bobcats avoid
sites only if there is an immediate risk of encountering a
coyote but otherwise maintain access to shared
resources (Broekhuis et al., 2013; Karanth et al., 2017).
The dominance hierarchy between mountain lions and
black bears also became more apparent at finer scales,
as mountain lion wait times were longer following the
detection of a black bear whereas black bear wait times
were shorter following the detection of a mountain lion.
Black bears often steal mountain lion kills or displace
mountain lions at carcasses (Elbroch & Kusler, 2018).
Mountain lions may therefore avoid areas recently used by
black bears to minimize loss of kills whereas black bears
may be attracted to areas recently used by mountain lions
in search of carcasses they can kleptoparasitize. These
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findings are consistent with our expectation that competi-
tive interactions would be most evident at finer scales and
offer limited support for our first hypothesis that subordi-
nate predators avoid dominant predators (H1).

Evidence of competitive effects on predator commu-
nities may vary with the temporal scale and response
variable of interest. Theory suggests that interspecific
competition manifests more strongly at fine scales
(Godsoe et al., 2015; Vanak et al., 2013; Wiens, 1989).
Consistent with this theory, we found that the space use
of apex predators influenced weekly detection probabili-
ties and wait times of subordinate predators but not
their seasonal occupancy probabilities. Indeed, species
interactions are often ephemeral and occur at relatively
local scales (e.g., short-term encounters) that may not
scale to broader patterns of space use within a predator
community (Andrade-Ponce et al., 2022; Cusack et al.,
2017; Godsoe et al., 2015). The effects of ephemeral
antagonism on large-scale distribution or abundance are
difficult to detect without landscape-scale replicated
manipulation and are difficult to infer without detailed
studies of individual energetics or survival. Spatial varia-
tion in abundance may be a more appropriate metric than
co-occurrence to study the outcomes of competitive inter-
actions between predators. The relationship between occu-
pancy and abundance is non-linear (Emmet et al., 2021;
Steenweg et al., 2018); densities of competing predators
are often negatively correlated as dominant predators can
suppress subordinate predator populations (Goodheart
et al., 2022; Prugh & Sivy, 2020), yet patterns of spatial
avoidance or competitive exclusion may go undetected
depending on the occupancy–abundance relationship,
scale, and strength of interactions (Blanchet et al., 2020;
Godsoe et al., 2015; Steenweg et al., 2018). Studies of
co-occurrence frequently find neutral or positive spatial
associations between predators despite known antagonistic
relationships (e.g., Davis et al., 2021; King et al., 2021;
Lombardi et al., 2020), which begs the question of whether
co-occurrence models can capture population-level
effects of competition on predators (Blanchet
et al., 2020). Co-abundance models may offer greater
insight into both the spatial and demographic effects of
competition on predator communities (e.g., Amir
et al., 2022; Brodie et al., 2018) even when co-occurrence
patterns are positive.

Our study focused on the effects of competition and
prey availability on predator co-occurrence in mid- to
late-summer. However, prey distributions and availability
vary seasonally and likely influence predator competition
and space use patterns. For instance, black bears, coyotes,
and bobcats primarily prey on neonatal ungulates during
the peak of deer and elk parturition (June) and shift their
diets to other resources as neonates grow and become

harder to catch (Kilgo et al., 2012; White et al., 2010). We
were unable to consider predator co-occurrence patterns
throughout the year owing to seasonal constraints of
camera maintenance, and we acknowledge that our
results apply to only a snapshot in time that may not
reflect predator space use patterns at different times of
year (Wiens, 1993). We also note that we did not account
for anthropogenic effects in our system but recognize that
humans can have a significant influence on predator
populations and co-occurrence. For instance, Manlick
et al. (2020) found that land-use change
(i.e., development and agriculture) had negative effects
on carnivore co-occurrence, likely owing to reduced habi-
tat availability. We did not consider anthropogenic effects
in our study because our cameras were deployed in rela-
tively remote areas where human detections were infre-
quent on most cameras in summer and the human
footprint (e.g., human density, development, and infra-
structure) across camera sites was low (based on a global
human footprint index; Gassert et al., 2023). Humans
may strongly influence carnivore co-occurrence at other
times of year however, particularly during the fall hunt-
ing season when hunter activity has been shown to influ-
ence predator space use and activity in nearby systems
(e.g., Bassing et al., 2024).

Using camera trap data in multispecies occupancy
models can provide insight into species interactions
(Andrade-Ponce et al., 2022), but unknown and unmod-
eled variables could provide qualitatively different inter-
pretations of co-occurrence patterns (Andrade-Ponce
et al., 2022; Blanchet et al., 2020). Detection rates are
influenced by animal movement (Broadley et al., 2019;
Stewart et al., 2018), so animals that increase localized
movement when dominant competitors are nearby
(e.g., Goodheart et al., 2022) would generate positive
co-detection under our study design. Multispecies occu-
pancy models also require large amounts of data and can
fail to detect interactions if sample sizes are too small
(Kéry & Royle, 2021). Larger carnivores are particularly
challenging to detect, which can limit robust inference
about species interactions (Dröge et al., 2017). This, and
violation of the closure assumption (Lonsinger, 2022),
likely contributed to the limited evidence of interspecific
interactions involving the larger predators in our system.

We demonstrated that space use among sympatric
predators was largely structured by prey abundance and
habitat, whereas the distribution of putative competitors
generally did not influence predator co-occurrence in our
system. Instead, some predator dyads appeared to be
attracted to common sites, possibly owing to the avail-
ability of shared prey or scavenging opportunities. Space
use by subordinate mesopredators was affected by the
presence of multiple sympatric predators across temporal
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scales and sometimes with an interactive effect of prey
availability. Our study highlights the importance of
assessing multiple interspecific interactions simulta-
neously, as well as evaluating interactions across multiple
spatiotemporal scales, to uncover nuanced relationships
between competing predators, their prey, and space.
Lastly, our results suggest that changes in space use by
one predator species will generally have little impact on
the distribution of sympatric predators in our system,
which may have implications for predator conservation
and management.
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